

Forschungsprojekt EcoModeController

EFRE.NRW

Projektüberblick EcoModeController

EUROPÄISCHE UNION

Projektüberblick

- **■** Leitmarktwettbewerb: EnergieUmweltwirtschaft.NRW
 - Wettbewerbsaufruf 2014, 1. Einreichungsrunde

■ Projektträger:

ETN

Projektträger Energie - Technologie - Nachhaltigkeit Forschungszentrum Jülich GmbH in der Helmholtz-Gemeinschaft

- **■** EcoModeController:
 - **Energieeffiziente Prozessführung von Kalandern**
- **■** F&E-Projekt industrielle Forschung

■ Geplante Gesamtausgaben: 982.799,06 €

■ Gesamtförderung: 760.899,15 €

- Laufzeit 3 Jahre
 - 09.03.2016 09.03.2019

Konsortium

Dienstleister

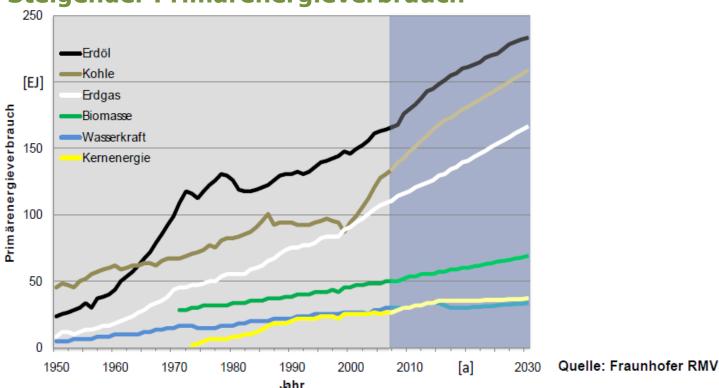
Partner

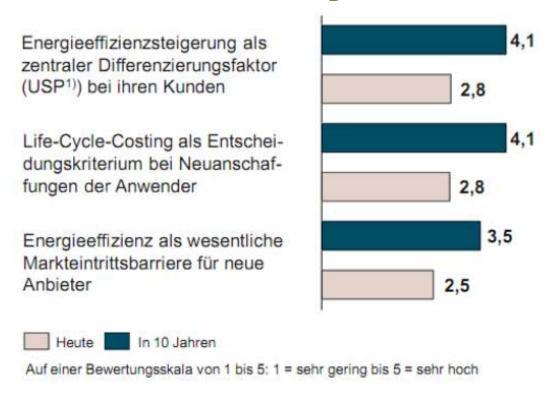
Forschungsinstitut

Assoziierter Partner (Anwender)

Steigender Energiebedarf

Steigender Primärenergieverbrauch




Abbildung 1: Primärenergieverbrauch bis zum Jahre 2030

■ Bisher liegt der Anteil der Energiekosten in der Produktion bei ca. 3-5%. Dieser Kostenfaktor wird in Zukunft stark zunehmen

Bedeutung von Energieeffizienz

■ Die Bedeutung der Energieeffizienz wird in den nächsten 10 Jahren weiter stark steigen

Quelle: VDMA, Roland Berger Strategy Consultans

1) Unique Selling Proposition

Abbildung 2: Bedeutung Energieeffizienz als Differenzierungsfaktor

Einflussfaktoren (technologische Hebel)

- Optimierung der Systemsteuerung
 - Zusammenwirken mehrere Subsysteme
 - Optimierung der Maschinenabläufe
- Verfahrens- / Prozessoptimierung
 - Änderung des Stoffstroms bei Produktionsprozessen
- **■** Konstruktionsoptimierung
 - Konstruktion von energieeffizienten Komponenten und Subsystemen
- Materialoptimierung
 - Qualitätsverbesserung bzw. Austausch des verbauten Materials
- Substitution von Subsystem
 - Ersatz von Subsystemen
- Die ersten drei Punkte bieten laut der Studie die Größten Möglichkeiten zur Steigerung der Energieeffizienz

Quelle: VDMA,

Roland Berger Strategy Consultans,

Projektziele und - anforderungen EcoModeController

■ Generelle Ausgangslage

- Steigende Energiekosten
- Zahlreiche staatliche Lenkungsmaßnahmen
- Optimierungsschwerpunkt: Konstruktion und Verfahrenstechnik

■ Projektziele

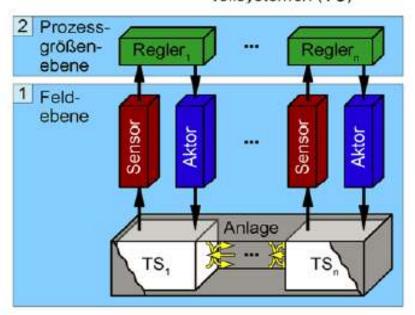
- Betrieb:
 - Mindestens gleichbleibende Produktqualität
 - Signifikant reduzierter Energiebedarf
 - Reduzierter Ausschuss
- Integration in die aktuelle Softwarearchitektur:
 - Geringer Zeitaufwand
 - Geringer technischer Aufwand
- Entwurfsmethodik:
 - Geringer Zeitaufwand
 - Geringer technischer Aufwand

Anforderung

- Sehr hohes Energiesparpotential
- Gute Integrierbarkeit in vorhandene Anlagen
- Geringer Investitionsbedarf

Konzept EcoModeController

- Nutzung von neuartigen Regelungs- und Diagnosemethoden
 - **■** Bisher nicht im Einsatz
- **Zentraler, modellbasierter Ansatz**
 - Verfügbarstellung von Informationen, z.B. Wechselwirkungen zwischen Einzelkomponenten
 - Erlaubt komplexe Diagnose
 - Ermöglicht schnelle, individuelle Reaktion auf Systemveränderungen


Vergleich Eingrößenregler vs. EcoModeController-Regler

Aktuelle Software-Komponenten

EcoModeController Software-Komponenten

Energetische Kopplung zwischen Teilsystemen (TS)

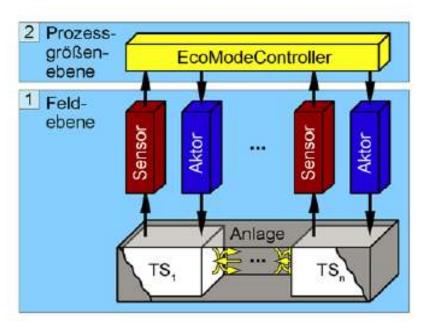


Abbildung 3: Wirkungsweise der aktuell verwendeten, dezentralen Eingrößenregler (links) und der EcoModeController-Lösung (rechts)

Vor- und Nachteile Eingrößenregler vs. EcoModeController-Regler

Eingrößenregler

Vorteile

- Relativ einfacher Entwurf
- Aufwand zur Erstellung eines mathematischen Modell entfällt

Nachteile

- Energieoptimaler Betrieb kann nicht sichergestellt werden, da die Regler nur für Teilsysteme ausgelegt sind
- Regelgüte abhängig vom individuellen Expertenwissen, da heuristischer Entwurf
- Hoher Testaufwand notwendig, da heuristischer Entwurf

EcoModeController-Regler

Vorteile

- Steigerung der Energieeffizienz, da systeminhärente energetische Zusammenhänge berücksichtig werden
- Systematischer Reglerentwurf
- Expertenwissen im Modell "gespeichert"
- Geringerer Testaufwand notwendig und damit kürzere Stillstandzeit

Nachteil

 Aufwand zur Erstellung eines mathematischen Modells des Kalanders

Projektplan: Arbeitspakete

			2016							Т	2017								2019					
Arbe	itspakete	1	2 3	3 4	5 6	7	8 9	10	11 12	1	2 3	4	5 6	7 8	8 9	10 11	1 12	1	2 3	4	5 6	7 8	3 9	10 11 12
AP0	Projektmanagement																							
AP1	Strukturelle Analyse									П									\Box				\square	
1.1	Ermittlung der Anforderungen und Randbedingungen	•	•	• •		П		П				П		П						П			\square	
1.2	Untersuchung mittels struktureller Analysemethoden		•	•	•																			
AP2	Modellerstellung und quantitative Analyse	Ш																						
2.1	Komponentenerstellung Modellbaukasten	\Box	•	• •	•	•	•	•	• •	•		П		П						П			\square	
2.2	Synthese Kalandermodell Renolit						•	•	• •	•	•	•												
2.3	Integration Sensorik				•	•	•													П				
2.3	Modellverifikation	\Box	П	П	•	•	•	•	• •	•	•	•		П	П			П	Т	П	Т	П	П	
2.4	Identifikation und Quantifizierung der relevanten Wechselwirkungen	П					Т	П		П				П					Т	П	Т	П	П	
	und des energetischen Einsparpotentials										1		•											
AP3	Reglerentwurf zur energieeffizienten Prozessführung																							
3.1	Analyse bestehende Regelungen	\Box							• •	•	•			П						П				
3.2	Modellreduktion							П		•	•	•	•							П				
3.3	Entwurf und Erprobung (MiL-Ansatz) des Reglers	Ш										•	•	•	•	•	•	•	•	•	•			
AP4	Entwurf der zentralen Diagnoseschicht																							
4.1	Konzeption der Hardwarearchitektur und der Softwareschnittstelle								• •	•	•	•												
4.2	Entwurf und Erprobung (MiL-Ansatz) der Diagnosschicht											•	•	•	•	•	•	•	•	•	•			
AP5	Erprobung am Kalander																							
5.1	Integration und Inbetriebnahme der neuen Prozessführungsmodule															•	•	•						
5.2	Test des Reglers																•	•	•	•	• •	•	•	• •
5.2	Test der zentralen Diagnoseschicht																•	•	•	•	• •	•	•	• •
AP6	Dokumentation und Verbreitung																							

Projektplan: Meilensteine

Arbe	itspakete	1	2 3	4 5	2016 8 7	8 9	10 11 1	2 1 2	3 4	5 8	1 7 7 8 9	10 11 12	1 2	3 4	20 5 6	18 7 8	9 10 1	11 12
Meile	ensteine							П										
M1.1	Anforderungen und Randbedingungen ermittelt Ergebnis: Anforderungsliste liegt vor Strukturelle Analyse durchgeführt			x			П	П			Ш						П	ightharpoonup
M1.2	Ergebnis: Strukturdiagramme liegen vor	Ц		x	Ш	Ш	Ш	Ш		Ш			Ш			Ш	Щ	\perp
M1	Review und Abschluss AP 1 Ergebnis: Ergebnisse von M1.1 - M1.2 und Dokumentation liegen vor			X														
M 2.1	Modellbaukasten erstellt Ergebnis: Mathematische Modelle der Teilkomponenten liegen vor							×										
M2.1	Modell RENOLIT-Kalander erstellt Ergebnis: Mathematisches Modell des Kalanders verifiziert								x									
M2.2	Sensorik in Anlage integriert Ergebnis: Alle benötigten Messdaten können aufgzeichnet werden					x												
M2.3	Quantitative Analyse durchgeführt Ergebnis: Quantitative Ergebnisse zu Wechselwirkungen liegen vor									x								
M2	Review und Abschluss AP 2 Ergebnis: Ergebnisse von M2.1 - M2.3 und Dokumentation liegen vor									x								
M3.1	Modellreduktion durchgeführt Ergebnis: Reduziertes Modell verifiziert									x								
M3.2	Mehrgrößenregler entworfen Ergebnis: Mehrgrößenregler mittels MiL-Ansatz erfolgreich getestet														x			
М3	Review und Abschluss AP 3 Ergebnis: Ergebnisse von M3.1 - M3.2 und Dokumentation liegen vor														X			
M4.1	Architektur und Softwareschnittstelle konzipiert Ergebnis: Architektur- und Schnittstellenkonzepte liegen vor								x									
M4.2	Zentrale Diagnoseschicht entworfen Ergebnis: Diagnoseschicht mittels MiL-Ansatz erfolgreich getestet	П					П						П		x			
M4	Review und Abschluss AP 4 Ergebnis: Ergebnisse von M4.1 - M4.2 und Dokumentation liegen vor	П		П	П		П	П					П		x			
M5.1	Neue Prozessführung integriert Ergebnis: Kalander bereit für Erprobung												x					
M5.2	Neue Prozessführung erprobt Ergebnis: Prozessführung erfolgreich getestet, Einsparergebnisse validiert																:	x
M5	Review und Abschluss AP 5 Ergebnis: Ergebnisse von M5.1 - M5.2 und Dokumentation liegen vor																	X
M6	Dokumentation abgeschlossen Ergebnis: Vollständige Projektdokumentation liegt vor																	×
Vollv	ersammlungen	x			х			х			х		х			x		Х

Aktueller Stand

- Projektstart Mai 2016
- Anforderungsanalyse weitestgehend abgeschlossen
- Simulationsmodellierung in Arbeit mittels Mathlab/Simulink
 - Erstes Walzenpaar ist simuliert
- **■** Entwicklung des Steuerungskonzepts in Arbeit